On Fluid Compressibility in Switch-Mode Hydraulic Circuits—Part I: Modeling and Analysis

Author:

Van de Ven James D.1

Affiliation:

1. Department of Mechanical Engineering, Worcester Polytechnic Institute, 100 Institute Road, Worcester, MA 01609

Abstract

Fluid compressibility has a major influence on the efficiency of switch-mode hydraulic circuits due to the release of energy stored in fluid compression during each switching cycle and the increased flow rate through the high-speed valve during transition events. Multiple models existing in the literature for fluid bulk modulus, the inverse of the compressibility, are reviewed and compared with regards to their applicability to a switch-mode circuit. In this work, a computational model is constructed of the primary energy losses in a generic switch-mode hydraulic circuit with emphasis on losses created by fluid compressibility. The model is used in a computational experiment where the system pressure, switched volume, and fraction of air entrained in the hydraulic fluid are varied through multiple levels. The computational experiments resulted in switch-mode circuit volumetric efficiencies that ranged from 51% to 95%. The dominant energy loss is due to throttling through the ports of the high-speed valve during valve transition events. The throttling losses increase with the fraction of entrained air and the volume of fluid experiencing pressure fluctuations, with a smaller overall influence seen as a result of the system pressure. The results of the computational experiment indicate that to achieve high efficiency in switch-mode hydraulic circuits, it is critical to minimize both the entrained air in the hydraulic fluid and the fluid volume between the high-speed valve and the pump, motor, or actuator. These computational results are compared with experimental results in Part II of this two part paper series.

Publisher

ASME International

Subject

Computer Science Applications,Mechanical Engineering,Instrumentation,Information Systems,Control and Systems Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3