Evaluation of Composite Structural Materials for Heliostat Cost Reduction

Author:

Tsvankin Daniel12,Muller Matthew12

Affiliation:

1. National Renewable Energy Laboratory , Golden, CO 80401

2. National Renewable Energy Laboratory (NREL) , Golden, CO 80401

Abstract

Abstract Structures manufactured from steel comprise up to 40% of a concentrating solar thermal power (CSP) heliostat's cost. Composite structures represent a potential opportunity to reduce this cost. A reference heliostat structural model has been created with a reflector area of 25 m2. The design, constructed of low-carbon steel, provides baseline deflection and stiffness under a 21 m/s operating wind speed. Established roster of suitable metal alternative materials is considered including glass, basalt, and carbon fiber-reinforced polymer (GFRP, BFRP, and CFRP, respectively). Three heliostat components are investigated: the pylon, torque tube, and the purlin–strut assembly. Composite material properties are substituted for those of steel, and the beams are re-sized to match the original steel components’ deflection under given wind loads. Weight and cost changes resulting from this resizing are evaluated. It is found that GFRP and BFRP represent a 3 ×–6 × cost premium for the same operating deflection characteristics as steel across all three investigated component classes; with weight reduction only achieved for the purlin–strut assembly. While CFRP components can achieve approximately 25–75% weight savings depending on the application, this comes with a 9 ×–14 × cost increase over the steel baseline for tube-type structures and roughly 5 × cost increase when replacing c-channel structures. This work does not rule out the possibility of cost savings when the heliostat design and kinematics take advantage of composites' specific properties.

Funder

Solar Energy Technologies Program

Publisher

ASME International

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3