Design and Evaluation of an Instrumented Wobble Board for Assessing and Training Dynamic Seated Balance

Author:

Williams Andrew D.1,Boser Quinn A.1,Kumawat Animesh Singh2,Agarwal Kshitij1,Rouhani Hossein3,Vette Albert H.4

Affiliation:

1. Department of Biomedical Engineering, Research Transition Facility, University of Alberta, 8308-114 Street, Edmonton, AB T6G 2V2, Canada e-mail:

2. Faculty of Kinesiology and Physical Education, University of Toronto, WS2021F, 55 Harbord Street, Toronto, ON M5S 2W6, Canada e-mail:

3. Department of Mechanical Engineering, Donadeo Innovation Centre for Engineering, University of Alberta, 9211-116 Street, Edmonton, AB T6G 1H9, Canada e-mail:

4. Mem. ASME Department of Mechanical Engineering, Donadeo Innovation Centre for Engineering, University of Alberta, 9211-116 Street, Edmonton, AB T6G 1H9, Canada e-mail:

Abstract

Methods that effectively assess and train dynamic seated balance are critical for enhancing functional independence and reducing risk of secondary health complications in the elderly and individuals with neuromuscular impairments. The objective of this research was to devise and validate a portable tool for assessing and training dynamic seated balance. An instrumented wobble board was designed and constructed that (1) elicits multidirectional perturbations in seated individuals, (2) quantifies seated balance proficiency, and (3) provides real-time, kinematics-based vibrotactile feedback. After performing a technical validation study to compare kinematic wobble board measurements against a gold-standard motion capture system, 15 nondisabled participants performed a dynamic sitting task using the wobble board. Our results demonstrate that the tilt angle measurements were highly accurate throughout the range of wobble board dynamics. Furthermore, the posturographic analyses for the dynamic sitting task revealed that the wobble board can effectively discriminate between the different conditions of perturbed balance, demonstrating its potential to serve as a clinical tool for the assessment and training of seated balance. Vibrotactile feedback decreased the variance of wobble board tilt, demonstrating its potential for use as a balance training tool. Unlike similar instrumented tools, the wobble board is portable, requires no laboratory equipment, and can be adjusted to meet the user's balance abilities. While future work is warranted, obtained findings will aid in effective translation of assessment and training techniques to a clinical setting, which has the potential to enhance the diagnosis and prognosis for individuals with seated balance impairments.

Funder

Natural Sciences and Engineering Research Council of Canada

Publisher

ASME International

Subject

Physiology (medical),Biomedical Engineering

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3