Influence of Spud-Can-Soil Interaction Modeling and Parameters on the Reliability Index of Neka Drilling Jack-Up Platform

Author:

Emami Azadi M. R.1

Affiliation:

1. Azarbaijan T.M. University, Tabriz, East-Azarbaijan 51549, Iran

Abstract

In the present study, the influence of spud-can-soil modeling and parameters on the reliability index of jack-up platform is investigated. Neka platform is studied as a case, which is a three-leg drilling jack-up type platform located in water depth of about 91 m in the Caspian Sea region. Various spud-can-soil interaction models such as pinned, fixed-base, hyperelastic, and nonlinear elastoplastic spud-can models are applied. The soil type is varied from loose to dense sand and also from soft NC clay to very stiff OC Clay. The effect of bias and coefficient of variation (COV) of the spud-can-soil interaction modeling and also the soil parameters such as the effective interface soil friction angle and also the undrained shear strength of clayey soil are studied. The results showed that inclusion of spud-can-soil interaction may have a considerable effect on the reliability of the jack-up platform. In particular, the bias and COV of soil have shown to have more significant effect on the reliability of jack-up platform in loose sand and soft clayey type soils. It is also found that bias in strength modeling of jack-up itself has less profound effect on the reliability index of the jack-up-foundation-soil system. Importance factors of spud-can-soil modeling are found to be quite considerable. The key aspect is that the inclusion of jack-up-spud-can-soil interaction is more crucial with respect to the reliability of jack-up platform than the choice of interaction model itself.

Publisher

ASME International

Subject

Mechanical Engineering,Ocean Engineering

Reference33 articles.

1. Ultimate Capacity of Jack-Ups Considering Foundation Behavior;Amdahl

2. Advances in the Three-Dimensional Fluid-Structure-Soil Interaction Analysis of Offshore Jack-Up Structures;Bienen;Mar. Struct.

3. Analysis of Jack-Up Units Using a Constrained New Wave Methodology;Cassidy;Appl. Ocean Res.

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3