Seismic Performance of Jacket Type Offshore Platforms Through Incremental Dynamic Analysis

Author:

Asgarian Behrouz1,Ajamy Azadeh1

Affiliation:

1. Civil Engineering Faculty, K. N. Toosi University of Technology, Tehran 15875-4416, Iran

Abstract

Fixed offshore platforms in seismic active areas may be subjected to strong ground motions, causing the platform to undergo deformation well into the inelastic range. In this paper, incremental dynamic analysis (IDA) of jacket type offshore platforms subjected to earthquake was performed in order to study the linear and nonlinear dynamic behavior of this type of structures. IDA is a parametric analysis method that has been recently presented to estimate structural performance under seismic loads. By using incremental dynamic analysis of jacket type offshore platforms, the assessment of demand and capacity can be carried out. The method was used to predict nonlinear behavior of three newly designed jacket type offshore platforms subjected to strong ground motions. The engineering demand parameters of the platforms in terms of story drifts and intermediate elevation maximum displacement for different records were compared. This method was used for the performance calculations (immediate occupancy, collapse prevention, and global dynamic instability) needed for performance-based earthquake engineering of the above mentioned platforms. Two different behaviors were observed for the third platform in the X and Y directions. Particular attention has to be paid for the seismic design of this kind of platform. The results of jacket type offshore platforms incremental dynamic analysis shows that the method is a valuable tool for studying dynamic behavior in a nonlinear range of deformation. Because of high uncertainty in the nonlinear behavior of this type of structures, it is recommended to use this method for the assessment and requalification of existing jacket type offshore platforms subjected to earthquake.

Publisher

ASME International

Subject

Mechanical Engineering,Ocean Engineering

Reference9 articles.

1. Earthquake Engineering

2. Direct Estimation of the Seismic Demand and Capacity of Oscillators With Multi-Linear Static Pushovers Through Incremental Dynamic Analysis;Vamvatsikos

3. Incremental Dynamic Analysis;Vamvatsikos;Earthquake Eng. Struct. Dyn.

4. Direct Estimation of Seismic Demand and Capacity of Multidegree-of-Freedom Systems Through Incremental Dynamic Analysis of Single Degree of Freedom Approximation;Vamvatsikos;J. Struct. Eng.

Cited by 21 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3