Affiliation:
1. Research and Development Division, The Babcock & Wilcox Co., Alliance Research Center, Alliance, Ohio 44601
Abstract
This paper presents a simple engineering procedure that the utility industry can use to assess the integrity of typical nuclear-grade pressure vessels. The procedure recognizes both brittle fracture and plastic collapse and is based on a set of proposed failure assessment curves which make up a safety/failure plane. The plane is defined by the stress intensity factor/fracture toughness ratio as the ordinate and the applied stress/reference plastic collapse stress ratio as the abscissa. The failure assessment procedure is based in part on the British Central Electricity Generating Board’s R-6 failure assessment diagram and the deformation plasticity solutions of the General Electric Company. Two parameters, a plastic collapse parameter (Sr′) and linear elastic fracture mechanics parameter (Kr′) are calculated by the user. The point (Sr′, Kr′) is plotted on the appropriate failure assessment diagram. If the point lies inside the respective curve, the structure is safe from failure. Moreover, for a given pressure and a postulated or actual flaw size, the margin of safety of the structure can be simply determined. Consistent with Appendix A of Section XI, (Division 1) of the ASME Boiler and Pressure Vessel Code the procedure presented in this paper is limited to ferritic materials 4 in. (102 mm) and greater in thickness. Details of the derivation of the proposed set of failure assessment curves are provided along with a sample problem illustrating the use of these curves.
Subject
Mechanical Engineering,Mechanics of Materials,Safety, Risk, Reliability and Quality
Cited by
15 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献