Affiliation:
1. University of Karlsruhe, Karlsruhe, F.R. Germany
Abstract
The present paper describes three-dimensional calculations of film cooling by injection from a single row of holes. A systematic study of the influence of different parameters on the cooling effectiveness has been carried out. 27 test cases have been calculated, varying the injection angle (α = 10° / 45° / 90°), the relative spacing (s/D = 1.5/3/5) and the blowing rate (M = 0.5/1/2) for the same main-stream conditions. The governing 3D equations are solved by a finite volume method. The turbulent stresses and heat fluxes are obtained from a k-ε model modified to account for non-isotropic eddy viscosities and diffusivities. Examples of predicted velocity and temperature distributions are presented and compared with available experimental data. For all the test cases, the laterally averaged cooling effectiveness is given. On the whole, the agreement with experiments is fairly good, even though there are discrepancies about details in some of the cases. The influence of the individual parameters on the film cooling effectiveness is predicted correctly in all cases. This influence is discussed in some detail and the parameter combination with the best overall cooling performance is identified.
Publisher
American Society of Mechanical Engineers
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献