Energetic Comparison of Linear Fresnel and Parabolic Trough Collector Systems

Author:

Schenk Heiko1,Hirsch Tobias1,Fabian Feldhoff Jan1,Wittmann Michael1

Affiliation:

1. German Aerospace Center (DLR), Institute of Solar Research, Wankelstraße 5, Stuttgart 70563, Germany e-mail:

Abstract

In recent years, linear Fresnel (LF) collector systems have been developed as a technical alternative to parabolic trough (PT) collector systems. While in the past, LF systems focused on low- and medium-temperature applications, today, LF systems are equipped with vacuum receivers and, therefore, can be operated with similar operating parameters as PT systems. Papers about the technical and economical comparison of specific PT and LF systems have already been published (Dersch et al., 2009, "Comparison of Linear Fresnel and Parabolic Trough Collecor Systems—System Analysis to Determine Break-Even Costs of Linear Fresnel Collectors," Proceedings of the 15th International SolarPACES Symposium, Berlin; Giostri et al. 2011, "Comparison of Two Linear Collectors in Solar Thermal Plants: Parabolic Trough vs. Fresnel," ASME 2011 5th International Conference on Energy Sustainability, Washington, DC; and Morin et al., 2012, "Comparison of Linear Fresnel and Parabolic Trough Collector Power Plants," Sol. Energy, 86(1), pp. 1–12). However, the present paper focuses on the systematic differences in optical and thermodynamic performance and the impact on the economic figures. In a first step the optical performance of typical PT and LF solar fields (SFs) has been examined, showing the differences during the course of the day and annually. Furthermore, the thermodynamic performance, depending on the operating temperature, has been compared. In a second step, the annual electricity yield of typical PT and LF plants has been examined. Solar Salt has been chosen as the heat transfer fluid. Both systems utilize the same power block (PB) and storage type. Solar field size, storage capacity, and PB electrical power are variable, while all examined configurations achieve the same annual electricity yield. As expected for molten salt systems, both systems are the most cost-effective with large storage capacities. The lower thermodynamic performance of the LF system requires a larger SF and lower specific SF costs in order to be competitive. Assuming specific PT field costs of 300 €/m2 aperture, the break-even costs of the LF system with Solar Salt range between 202 and 235 €/m2, depending on the site and storage capacity. In order to confirm the major statements, within a sensitivity analysis, it is shown that a variation of SF and storage costs does not have a significant impact on the relative break-even costs of the LF system.

Publisher

ASME International

Subject

Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment

Reference23 articles.

1. Dersch, J., Morin, G., Eck, M., and Häberle, A., 2009, “Comparison of Linear Fresnel and Parabolic Trough Collector Systems—System Analysis to Determine Break-Even Costs of Linear Fresnel Collectors,” Proceedings of the 15th International SolarPACES Symposium, Berlin Germany, Sept. 15–18.

2. Giostri, A., Binotti, M., Silva, P., Macchi, E., and Manzolini, G., 2011, “Comparison of Two Linear Collectors in Solar Thermal Plants: Parabolic Trough vs. Fresnel,” ASME Paper No. ES2011-54312.10.1115/ES2011-54312

3. Comparison of Linear Fresnel and Parabolic Trough Collector Power Plants;Sol. Energy,2012

4. Press Release: TSE 1—The First Parabolic Trough Plant Using Direct Steam Generation—Delivers Its Full 5 MW of Output to Thailand's Power Network,2011

Cited by 37 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3