Numerical Thermal Analysis of a Hot Noncircular Rotating Cylinder in the Presence of a Magnetic Field

Author:

Khozeymeh-Nezhad Hojjat1,Basati Yaser1,Niazmand Hamid1

Affiliation:

1. Department of Mechanical Engineering, Ferdowsi University of Mashhad, Mashhad, P.O. Box No. 91775-1111, Iran

Abstract

Abstract In this paper for the first time, a Lattice Boltzmann Simulation is performed to analyze the simultaneous effects of a hot rotating elliptic cylinder and the magnetic field on the mixed convection flow in a square enclosure. Complicated flow patterns and isotherm plots are found and analyzed in the concentric annulus between the internal elliptic cylinder and the outer square enclosure. Results indicate that increasing the Reynolds number, instantaneous averaged Nusselt number of the enclosure and its oscillation amplitude increase, while decrease with increasing the Hartmann number especially at its lower values. Furthermore, response surface method is adopted to find the optimal location of the elliptic cylinder. Response surface optimization results reveal that the average Nusselt number shows a decreasing–increasing trend with increasing both nondimensional parameters of cylinder center (Xc, Yc). Finally, the optimal location of the elliptic cylinder for the maximum heat transfer rate is obtained as Xc = 0.65 and Yc = 0.35. Moreover, a comparative study is performed to evaluate the heat transfer effects of the elliptical cylinder rotation as compared to circular cylinder. It was found that the elliptical cylinder rotation has a significant effect on the heat transfer enhancement, especially at high values of Re and Ha. As an example, the heat transfer rate for the elliptical cylinder at Re = 200 is increased by 13% and 34% as compared to the circular cylinder at Ha = 50 and 100, respectively.

Publisher

ASME International

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3