Liquid-Metal MHD Open-Channel Flows

Author:

Hays P. R.1,Walker J. S.2

Affiliation:

1. Exploration and Production Research Center, Getty Oil Company, Houston, Texas

2. Department of Theoretical and Applied Mechanics, University of Illinois, Urbana, Ill. 61801

Abstract

Many metallurgical applications of magnetohydrodynamics (MHD) involve open-channel liquid-metal flows with magnetic fields. This paper treats the three-dimensional, variable-depth flow in a rectangular open channel having an electrically insulating bottom and perfectly conducting sides. A steady, uniform magnetic field is applied perpendicular to the channel bottom. Induced magnetic fields and surface tension effects are neglected, while the applied magnetic field is sufficiently strong that inertial effects are negligible everywhere. Viscous effects are confined to boundary layers adjacent to the bottom, sides, and free surface. Solutions are presented for the inviscid core and the boundary layers. The locations of the free surface above the core and above the boundary layers adjacent to the sides are obtained. The side-layer variables are rescaled into universal profile functions which depend on the coordinates in the channel’s cross section and on a parameter related to the local slopes of the bottom and the free surface. The solutions for the side layers in open channels are compared to the side-layer solutions for certain rectangular closed ducts in order to reveal the effects of the free surface. This comparison leads to a qualitative correspondence principle between open-channel and closed-duct side-layer solutions. The similarities and differences between corresponding open-channel and closed-duct side layers are discussed.

Publisher

ASME International

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3