A Microstructure-Level Material Model for Simulating the Machining of Carbon Nanotube Reinforced Polymer Composites

Author:

Dikshit Ashutosh1,Samuel Johnson1,DeVor Richard E.1,Kapoor Shiv G.1

Affiliation:

1. Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801

Abstract

A continuum-based microstructure-level material model for simulation of polycarbonate carbon nanotube (CNT) composite machining has been developed wherein polycarbonate and CNT phases are modeled separately. A parametrization scheme is developed to characterize the microstructure of composites having different loadings of carbon nanotubes. The Mulliken and Boyce constitutive model [2006, “Mechanics of the Rate Dependent Elastic Plastic Deformation of Glassy Polymers from Low to High Strair Rates,” Int. J. Solids Struct., 43(5), pp. 1331–1356] for polycarbonate has been modified and implemented to capture thermal effects. The CNT phase is modeled as a linear elastic material. Dynamic mechanical analyzer tests are conducted on the polycarbonate phase to capture the changes in material behavior with temperature and strain rate. Compression tests are performed over a wide range of strain rates for model validation. The model predictions for yield stress are seen to be within 10% of the experimental results for all the materials tested. The model is used to study the effect of weight fraction, length, and orientation of CNTs on the mechanical behavior of the composites.

Publisher

ASME International

Subject

Industrial and Manufacturing Engineering,Computer Science Applications,Mechanical Engineering,Control and Systems Engineering

Reference27 articles.

Cited by 21 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Microstructure-based finite element model for fracture cutting of bovine cortical bone;Journal of Manufacturing Processes;2023-09

2. 3D macro-mechanical FE simulation for GLARE® drilling with experimental validation;Composite Structures;2023-01

3. Machinability investigation of polymer/GNP nanocomposites in micro-milling;The International Journal of Advanced Manufacturing Technology;2021-12-08

4. FE-simulation of machining processes of epoxy with Mulliken Boyce model;Journal of Manufacturing Processes;2021-11

5. Influence of fillers on polymeric composite during conventional machining processes: a review;Journal of the Brazilian Society of Mechanical Sciences and Engineering;2021-01-26

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3