Affiliation:
1. Graduate Student e-mail:
2. Associate Professor
3. Graduate Student e-mail: School of Civil Engineering, University of Tehran, Tehran, 14174 Iran
Abstract
A new time integration scheme is presented for solving the differential equation of motion with nonlinear stiffness. In this new implicit method, it is assumed that the acceleration varies quadratically within each time step. By increasing the order of acceleration, more terms of the Taylor series are used, which are expected to have responses with better accuracy than the classical methods. By considering this assumption and employing two parameters δ and α, a new family of unconditionally stable schemes is obtained. The order of accuracy, numerical dissipation, and numerical dispersion are used to measure the accuracy of the proposed method. Second order accuracy is achieved for all values of δ and α. The proposed method presents less dissipation at the lower modes in comparison with Newmark's average acceleration, Wilson-θ, and generalized-α methods. Moreover, this second order accurate method can control numerical damping in the higher modes. The numerical dispersion of the proposed method is compared with three unconditionally stable methods, namely, Newmark's average acceleration, Wilson-θ, and generalized-α methods. Furthermore, the overshooting effect of the proposed method is compared with these methods. By evaluating the computational time for analysis with similar time step duration, the proposed method is shown to be faster in comparison with the other methods.
Subject
Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics
Reference22 articles.
1. Practical Aspects of Numerical Time Integration;Comput. Struct.,1977
2. Stability and Accuracy Analysis of Direct Time Integration Methods;Earthquake Eng. Struct. Dyn.,1973
3. Higher-Order Implicit Dynamic Time Integration Method;J. Struct. Eng.,2005
Cited by
15 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献