Scalar Characteristics of Combusting Flow in a Model Annular Combustor

Author:

Bicen A. F.1,Senda M.1,Whitelaw J. H.1

Affiliation:

1. Imperial College of Science & Technology, Department of Mechanical Engineering, Fluids Section, London SW7 2BX, United Kingdom

Abstract

Temperature and species concentration measurements have been obtained in a model combustor operating at an inlet temperature of 515 K and atmospheric pressure and are reported and discussed. The model comprises two rectangular sectors representing the primary and upper dilution zones of an annular combustor used in small gas-turbine engines. Natural gas (94 percent CH4) was used as fuel and was delivered through a T-vaporizer at rates that led to air-fuel ratios of 29 and 50, similar to those of take-off and ground-idle conditions, respectively. Temperatures were obtained at the exit of the combustor using fine-wire thermocouples and mean concentrations of major species were obtained in the primary zone and at the exit on a dry basis by gas sampling and analysis. The results show that the 200 K increase in inlet air temperature reduces the pattern factor from 0.55 to 0.3 and increases the combustion efficiency from 69 to 94 percent with the air-fuel ratio of 29. The higher air-fuel ratio improves the combustion efficiency to 97.6 percent but results in a worse pattern factor of 0.48. The results confirm the need for consideration of the rate-controlled CO → CO2 reaction in the dilution zone if CO emission is to be calculated correctly and temperatures are to be within 150 K. Examination of temperatures obtained from a local enthalpy balance shows that they are higher than measurements obtained with preheat, in contrast to a similar comparison without preheat.

Publisher

ASME International

Subject

Mechanical Engineering,Energy Engineering and Power Technology,Aerospace Engineering,Fuel Technology,Nuclear Energy and Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3