A Comparative Study of Syngas Production From Two Types of Biomass Feedstocks With Waste Heat Recovery

Author:

Islam Shahid12,Dincer Ibrahim13

Affiliation:

1. Faculty of Engineering and Applied Science, University of Ontario Institute of Technology, 2000 Simcoe Street North, Oshawa, ON L1H 7K4, Canada;

2. Mechanical Engineering Department, King Fahd University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia e-mail:

3. Mechanical Engineering Faculty, Yildiz Technical University, Besiktas, Istanbul, Turkey

Abstract

This paper deals with an integrated biomass system developed for syngas production with waste heat recovery option and analyzes this system thermodynamically using both energy and exergy approaches. Also, an aspenplus simulation model is developed to demonstrate comparative gasification analyses of wood (Birch) and olive waste using Gibbs reactor for syngas production. Gibbs free energy minimization technique is applied to calculate the equilibrium of chemical reactions. In this newly developed model, the heat of the product syngas and the waste heat from the flue gas are recovered through a unique integration of four heat exchangers to produce steam for the gasification process. The sensitivity analyses are performed to observe the variations in the concentration of the methane, carbon monoxide and carbon dioxide in syngas against various operating conditions. Furthermore, the performance of gasifier is indicated through cold gas energy efficiency (CGE) and cold gas exergy efficiency (CGEX). The overall energy and exergy analyses are also conducted, and the comparisons reveal that the biomass composed of olive waste yields high magnitude of overall and cold gas energy efficiencies, whereas wood (Birch) yields high magnitude of overall and cold gas exergy efficiencies. Moreover, the energy of the product syngas is recovered through an expander which enhances energy and exergy efficiencies of the overall system. The present results show that the CGE, CGEX, and overall energetic and exergetic efficiencies follow a decreasing trend with the increase in combustion temperature. The proposed system has superior and unique features as compared to conventional biomass gasification systems.

Publisher

ASME International

Subject

Geochemistry and Petrology,Mechanical Engineering,Energy Engineering and Power Technology,Fuel Technology,Renewable Energy, Sustainability and the Environment

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3