Experimental Study of the Flow in a Simulated Hard Disk Drive

Author:

Barbier Charlotte1,Humphrey Joseph A. C.1,Maslen Eric1

Affiliation:

1. Department of Mechanical and Aerospace Engineering, School of Engineering and Applied Science, University of Virginia, Charlottesville, VA 22904

Abstract

Instantaneous circumferential and radial velocity components of the air flowing past a symmetrical pair of suspension/slider-units (SSUs) attached to an E-Block/arm were measured in a specially designed corotating disk apparatus simulating a hard disk drive (HDD) using the particle image velocimetry technique. The geometrical dimensions of the components in the apparatus test section were scaled up by a factor of two, approximately, relative to those of a nominal 312 inch HDD. Most of the measurements were obtained on the interdisk midplane for two angular orientations of the arm/SSUs: (a) One with the tip of the SSUs near the hub supporting the disks; (b) another with the tip of the SSUs near the rims of the disks. Data obtained for disk rotational speeds ranging from 250 to 3000rpm (corresponding to 1250 to 15,000rpm, approximately, in a 312 inch HDD) were post-processed to yield mean and rms values of the two velocity components and of the associated shear stress, the mean axial vorticity, and the turbulence intensity (based on the two velocity components). At the locations investigated near the arm/SSUs, and for disk rotational speeds larger than 1500rpm, the mean velocity components are found to be asymptotically independent of disk speed of rotation but their rms values appear to still be changing. At two locations 90 and 29deg, respectively, upstream of the arm/SSUs, the flow approaching this obstruction displays features that can be attributed to the three-dimensional wake generated by the obstruction. Also, between these two locations and depending on the angular orientation of the arm/SSUs, the effect of the obstruction is to induce a three-dimensional region of flow reversal adjacent to the hub. Notwithstanding, the characteristics of the flow immediately upstream and downstream of the arm/SSUs appear to be determined by local flow-structure interactions. Aside from their intrinsic fundamental value, the data serve to guide and test the development of turbulence models and numerical calculation procedures for predicting this complex class of confined rotating flows, and to inform the improved design of HDDs.

Publisher

ASME International

Subject

Mechanical Engineering

Reference21 articles.

1. INSIC (Information Storage Industry Consortium), 2004, “The Future of Storage Applications, Information Continuity From Backup to Archive,” July 18–22, 2004, Monterey, CA.

2. The Flow Between Shrouded Corotating Disks;Abrahamson;Phys. Fluids A

3. Experimental Observation of an Unsteady Detached Shear Layer in Enclosed Corotating Disk Flow;Humphrey;Phys. Fluids A

4. On the Flow in the Unobstructed Space Between Shrouded Corotating Disks;Schuler;Phys. Fluids A

5. Unsteady Laminar Flow Between a Pair of Disks Corotating in a Fixed Cylindrical Enclosure;Humphrey;Phys. Fluids

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3