Transient Thermal Behavior of Preloaded Three-Pad Foil Bearings: Modeling and Experiments

Author:

Lee Donghyun1,Kim Daejong1,Sadashiva Ramesh P.1

Affiliation:

1. Department of Mechanical and Aerospace Engineering, University of Texas at Arlington, 500 West First Street, Arlington, TX 76019

Abstract

Oil-free turbomachinery have emerged as one of the core technologies for the future green power generation systems as stand-alone systems or hybridized with high temperature fuel cells or solar systems. Oil-free technology allows compact, clean, and maintenance-free operation, and foil bearings are at the center of the technology. Since their first commercial applications in the air cycle machines and auxiliary power units in 1970s, significant improvement has been made to the computational models for rotordynamic behavior. However, many technical issues still remain unsolved or poorly understood, and one of them is thermal management. This paper presents transient three-dimensional thermohydrodynamic (3D THD) model of radial foil bearings to predict transient thermal behavior of the bearing-rotor system. The transient model involves transient energy equations applied to all the mechanical structures and gas film. The model was verified through extensive experimental measurements of transient thermal behavior of three-pad foil bearing for various cooling air pressures, external loads, and speeds. The predictions showed very good agreements with the experiments, and also the 3D THD model could predict potential thermal instability observed in the experimental measurements.

Publisher

ASME International

Subject

Surfaces, Coatings and Films,Surfaces and Interfaces,Mechanical Engineering,Mechanics of Materials

Cited by 32 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A comprehensive review on advancements in compliant structures of gas foil journal bearings;Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology;2024-05-07

2. Nonlinear tribo-dynamic performance and transient stability for marine dynamically loaded offset-halves journal bearings;Tribology International;2024-03

3. Thermohydrodynamic Analysis of a Controllable Stiffness Foil Bearing With Shape Memory Alloy Springs: Experimental Tests and Theoretical Predictions;Journal of Tribology;2023-12-11

4. The Two-Pad: A Novel Gas Foil Bearing for Fuel Cell Vehicles;International Journal of Energy Research;2023-09-20

5. The fluid-thermal-structural interaction analysis of a new multifoil aerodynamic thrust bearings;Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology;2023-09-10

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3