Analysis of NOX Formation in an Axially Staged Combustion System at Elevated Pressure Conditions

Author:

Prathap Chockalingam1,Galeazzo Flavio C. C.1,Kasabov Plamen1,Habisreuther Peter1,Zarzalis Nikolaos1,Beck Christian2,Krebs Werner2,Wegner Bernhard2

Affiliation:

1. Division of Combustion Technology, Engler-Bunte-Institute, Karlsruhe Institute of Technology, Engler-Bunte-Ring 1, 76131 Karlsruhe, Germany

2. SIEMENS AG, Mellinghoferstr. 55, 45473 Mülheim an der Ruhr, Germany

Abstract

The objective of this investigation was to study the effect of axially staged injection of methane in the vitiated air cross flow in a two stage combustion chamber on the formation of NOX for different momentum flux ratios. The primary cylindrical combustor equipped with a low swirl air blast nozzle operating with Jet-A liquid fuel generates vitiated air in the temperature range of 1473–1673 K at pressures of 5–8 bars. A methane injector was flush mounted to the inner surface of the secondary combustor at an angle of 30 deg. Oil cooled movable and static gas probes were used to collect the gas samples. The mole fractions of NO, NO2, CO, CO2, and O2 in the collected exhaust gas samples were measured using gas analyzers. For all the investigated operating conditions, the change in the mole fraction of NOX due to the injection of methane (ΔNOX) corrected to 15% O2 and measured in dry mode was less than 15 ppm. The mole fraction of ΔNOX increased with an increase in mass flow rate of methane and it was not affected by a change in the momentum flux ratio. The penetration depth of the methane jet was estimated from the profiles of mole fraction of O2 obtained from the samples collected using the movable gas probe. For the investigated momentum flux ratios, the penetration depth observed was 15 mm at 5 bars and 5 mm at 6.5 and 8 bars. The results obtained from the simulations of the secondary combustor using a RANS turbulence model were also presented. Reaction modeling of the jet flame present in a vitiated air cross flow posed a significant challenge as it was embedded in a high turbulent flow and burns in partial premixed mode. The applicability of two different reaction models has been investigated. The first approach employed a combination of the eddy dissipation and the finite rate chemistry models to determine the reaction rate, while the presumed JPDF model was used in the further investigations. Predictions were in closer agreement to the measurements while employing the presumed JPDF model. This model was also able to predict some key features of the flow such as the change of penetration depth with the pressure.

Publisher

ASME International

Subject

Mechanical Engineering,Energy Engineering and Power Technology,Aerospace Engineering,Fuel Technology,Nuclear Energy and Engineering

Reference26 articles.

1. Assessment of Theories for the Behavior and Blowout of Lifted Turbulent Jet Diffusion Flames;Pitts

2. Turbulent Combustion

3. Towards an Understanding of the Stabilization Mechanisms of Lifted Turbulent Jet Flames: Experiments;Lyons;Prog. Energy Combust. Sci.

4. Lifted Flames on Fuel Jets in Co-Flowing Air;Lawn;Prog. Energy Combust. Sci.

5. Blow-Out Stability of Gaseous Jet Diffusion Flames. Part I: In Still Air;Kalghatgi;Combust. Sci. Technol.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3