An Experimental Investigation of the Effects of Subcooling and Velocity on Boiling of Freon-113

Author:

Huang L.1,Witte L. C.1

Affiliation:

1. Heat Transfer and Phase Change Laboratory, Department of Mechanical Engineering, University of Houston, Houston, TX 77204-4792

Abstract

Boiling heat transfer correlations were obtained for the maximum and minimum heat fluxes. Relationships among qmin/qmax, Weber number, and liquid Jakob number were obtained. Compelling evidence was found to indicate that significant cooling of the wake and/or the forward stagnation line can be caused by large-scale liquid–solid contacts while other parts of the surface experienced film boiling with little or no contact in the transition-film boiling regime. A criterion for large-scale liquid-solid contacts was developed. Another purpose of this study was to investigate whether a stable transition of boiling exists, i.e., if the ratio of the minimum and maximum heat fluxes approaches unity as liquid subcooling and velocity are increased. Extensive data using Freon-113 were taken, covering a wide range of fluid velocities (1.5 to 6.9 m/s) and liquid subcooling (29 to 100°C) at pressures ranging from 122 to 509 kPa. Cylindrical electric resistance heaters of two diameters, 6.35 mm and 4.29 mm, and made of Hastelloy-C and titanium, respectively, were used. The maximum qmin/qmax achievable with the apparatus was 0.9.

Publisher

ASME International

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

Reference12 articles.

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Flow Boiling Heat Transfer on Micro Pin Fins Entrenched in a Microchannel;Journal of Heat Transfer;2010-02-19

2. Dynamic analysis of three-dimensional flow in the opening process of a single-disc butterfly valve;Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science;2010-02-01

3. Heat transfer enhancement of copper nanofluid with acoustic cavitation;International Journal of Heat and Mass Transfer;2004-07

4. Boiling hysteresis of impinging circular submerged jets with highly wetting liquids;International Journal of Heat and Fluid Flow;2004-02

5. Local jet impingement boiling heat transfer with R113;Heat and Mass Transfer;2003-08-21

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3