Transient Heating and Melting of Particles in Plasma Spray Coating Process

Author:

Jog M. A.1,Huang L.1

Affiliation:

1. Department of Mechanical, Industrial, and Nuclear Engineering, University of Cincinnati, Cincinnati, OH 45221-0072

Abstract

In the plasma spray coating process, solid particles are injected into a plasma jet. The heat transfer from the plasma to the particles results in heating and melting of the particles. The molten particles impact on a surface forming a thin coat. In this paper, we investigate the heating and melting of a spherical particle injected into a thermal plasma. The transient temperature distribution in the particle interior is obtained simultaneously with the temperature and number density variations of the ions, electrons, and the neutrals as well as the electric potential variation in the plasma. Our analysis incorporates a model for the production and recombination of electrons and ions. The transport in the plasma is modeled by considering the main body of the plasma as charge neutral and a charge sheath in the vicinity of the particle surface. The heat flux to the particle is evaluated by taking into account all modes of heat transfer to the surface. The temporal variations of the particle temperature distribution are calculated. Results are compared with the available predictions made without taking into account the gas ionization to assess the importance of ionization and particle charging on the heat transport to the particle. For argon, for the particle materials considered in this study, the effect of gas ionization on the heat transport was found to be negligible for plasma temperatures below 6500 K.

Publisher

ASME International

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3