Experimental Investigation of Shock-Induced Blade Oscillation at an Elastically Suspended Turbine Cascade in Transonic Flow

Author:

Urban Brigitte1,Stetter Heinz1,Vortmeyer Nicolas2

Affiliation:

1. University of Stuttgart, Stuttgart, Germany

2. Siemens AG, Muelheim, Germany

Abstract

Experimental investigations on shock-induced flutter in a linear transonic turbine cascade are presented. To examine the relation between trailing edge shock oscillations on adjacent blades in transonic flow and observed turbine blade vibrations, an elastic suspension system has been developed so that only aerodynamic coupling occurs in the system. The experimental investigations have been performed on a linear test rig with superheated steam as working fluid. The test facility enables Mach and Reynolds numbers to be varied independently. The investigated cascade consists of seven blades which are taken from the tip section of a transonic low pressure steam turbine blade. Each blade is attached by an elastic spring system which allows the respective blade to vibrate in a mode equal to the real blade’s first bending mode. By varying the individual spring stiffness it is possible to either get a tuned or mistuned cascade. The examinations mainly deal with the oscillatory behavior of the blades with respect to a variation in the isentropic outlet Mach number. In addition, the complex shock-boundary-layer interaction on the blades’ suction sides is described. An important result is that the maximum blade oscillation amplitude can be related to a specific outlet Mach number. At this Mach number all seven blades are vibrating with exactly the same frequency. This phenomenon is observed at both the tuned and the mistuned cascades. Spectrum analysis shows that one of the major shock oscillation frequencies corresponds to the flutter frequency. In addition to this frequency the spectrum analysis of the blade oscillation shows the dominant frequencies of the shock oscillation which are not natural blade frequencies. The experimental results show that oscillating shocks in a linear cascade give high potential for aeroelastic excitation of transonic blades under certain flow conditions. Blade oscillations and shock characteristics are discussed in detail.

Publisher

American Society of Mechanical Engineers

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A Low-Speed Compressor Test Rig for Flutter Investigations;Journal of Turbomachinery;2019-01-25

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3