Demonstration of a Semi-Closed Cycle, Turboshaft Gas Turbine Engine

Author:

Meitner Peter L.1,Laganelli Anthony L.2,Senick Paul F.3,Lear William E.4

Affiliation:

1. U.S. Army Research Laboratory, National Aeronautics and Space Administration, Glenn Research Center, Cleveland, OH

2. Scientilic Applications International Corporation, King of Prussia, PA

3. National Aeronautics and Space Administration, Glenn Research Center, Cleveland, OH

4. University of Florida, Gainesville, FL

Abstract

A semi-closed cycle, turboshaft gas turbine engine was assembled and tested under a cooperative program funded by the NASA Glenn Research Center with support from the U.S. Army. The engine, called HPRTE (High Pressure, Recuperated Turbine Engine), features two distinct cycles operating in parallel; an “inner,” high pressure, recuperated cycle, in which exhaust gas is recirculated, and an “open” through-flow cycle. Recuperation is performed in the “inner,” high pressure loop, which greatly reduces the size of the heat exchanger. An intercooler is used to cool both the recirculated exhaust gas and the fresh inlet air. Because a large portion of the exhaust gas is recirculated, significantly less inlet air is required to produce a desired horsepower level. This reduces the engine inlet and exhaust flows to less than half that required for conventional, open cycle, recuperated gas turbines of equal power. In addition, the reburning of the exhaust gas reduces exhaust pollutants. A two-shaft engine was assembled from existing components to demonstrate concept feasibility. The engine did not represent an optimized system, since most components were oversized, and the overall pressure ratio was much lower than optimum. New cycle analysis codes were developed that are capable of accounting for recirculating exhaust flow. Code predictions agreed with test results. Analyses for a fully developed engine predict almost constant specific fuel consumption over a broad power range. Test results showed significant emissions reductions. This document is the first in a series of papers that arc planned to be presented on semi-closed cycle characteristics, issues, and applications, addressing the impact of recirculating exhaust flow on combustion and engine components.

Publisher

American Society of Mechanical Engineers

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Multi-objective optimisation of semi-closed cycle engines for high-altitude UAV propulsion;The Aeronautical Journal;2019-08-07

2. Impact of Vitiation on a Swirl-Stabilized and Premixed Methane Flame;Energies;2017-10-10

3. Combined Combustion and System Modeling of Semi-Closed Cycle PoWER Engine;48th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition;2010-01-04

4. Flame Blowout Stability in Vitiated Combustion;7th International Energy Conversion Engineering Conference;2009-06-14

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3