Experimental and Numerical Investigation of the Influence of Rotor Blades on Hot Gas Ingestion Into the Upstream Cavity of an Axial Turbine Stage

Author:

Bohn Dieter1,Rudzinski Bernd1,Sürken Norbert1,Gärtner Wolfgang2

Affiliation:

1. Aachen University of Technology, Aachen, Germany

2. MTU München GmbH, Germany

Abstract

The phenomenon of hot gas ingestion through turbine rim seals is experimentally and numerically investigated for a complete stage with nozzle guide vanes and uncooled helicopter turbine rotor blades. In the experimental part, two different geometrical rim seal configurations are examined: 1. a simple axial gap between rotor and stator disk and 2. an axial gap between the rotor disk and a rim seal lip at the periphery of the stator disk. The results obtained are compared to experiments carried out for the same geometry but without rotor blades. The influence of the presence of rotor blades on hot gas ingestion is examined for different parameters such as nondimensional seal flow rate, Reynolds number in the turbine annulus and rotational speed. For the determination of the sealing efficiency measurements of carbon dioxide gas concentration are carried out in the wheelspace. The static pressure distribution in the cavity is measured by means of pressure taps at the stator disk. It is shown that for configuration 1 the presence of rotor blades causes a considerable drop in sealing efficiency whereas for configuration 2 the sealing efficiency increases significantly. In the numerical part results of three-dimensional unsteady CFD calculations for configuration 2 are compared to steady calculations for the same configuration without blades. Predictions of hot gas ingestion and carbon dioxide gas concentration in the hub region and inside the cavity are presented. Special emphasis is put on unsteady effects arising from rotor movement. A local ingestion zone rotating at approximately half rotor speed is numerically predicted. As indicated by the experimental results the rotor blades have a positive influence on the predicted sealing efficiency.

Publisher

American Society of Mechanical Engineers

Cited by 42 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3