Modelling of the Combustion Process of a Premixed DLE Gas Turbine

Author:

Eggels R. L. G. M.1

Affiliation:

1. Rolls-Royce plc, Coventry, United Kingdom

Abstract

To obtain a better understanding of the internal combustion processes of gas turbines, CFD computations of a combustion chamber, based on a Rolls-Royce industrial gas turbine, were performed. Minor simplifications are made to generate a 3-D rotational symmetric geometry. Computations are performed at typical gas turbine conditions and natural gas is used as the fuel. An internal Rolls-Royce CFD code is applied to perform the computations. This paper explains the models used for the CFD computations and describes the advantages and limitations on the applied models. The combustion process has been modelled using a two-step global reaction mechanism and Intrinsic Low Dimensional Manifold (ILDM) reduced reaction mechanisms. The global reaction mechanisms are optimised for the considered operating conditions by modification of the reaction rates so that the same burning velocity and the amplitude CO-peak are obtained as predicted by detailed reaction mechanism (GRI 2.11, Bowman 1995). This optimisation is done considering a one-dimensional laminar flame. Although the global reaction mechanism is optimised for one particular operating condition, it appears that it is suitable for use over the entire range of operating conditions. The ILDM reduced reaction mechanisms are derived from GRI 2.11. Two ILDM tables are used to model two operating conditions, as they are specific for the pressure and inlet temperature. The interaction between turbulence and chemistry is modelled using presumed Probability Density Functions (PDF). The flow field in the combustion chamber is studied at isothermal and combusting conditions. It appeared that the flow field for burning and non-burning circumstances is quite different. There is a lack of experimental data so that it is not possible to verify the CFD results in detail. However, there is knowledge about the mechanisms by which the flame is stabilised and emissions are measured in the exhaust. The predicted flame front position agrees with that which is experimentally observed. The predicted increase of CO at low power is at the same order of magnitude as the measured emissions.

Publisher

American Society of Mechanical Engineers

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3