Detailed Flow and Heat Transfer Coefficient Measurements in a Model of an Internal Cooling Geometry Employing Orthogonal Intersecting Channels

Author:

Gillespie David R. H.1,Ireland Peter T.1,Dailey Geoff M.2

Affiliation:

1. University of Oxford, Oxford, UK

2. Rolls Royce plc., Derby, UK

Abstract

Cast interconnecting passage Lattice cooling geometries offer the gas turbine designer higher structural integrity and improved convective efficiency when compared to traditional aerofoil rear cooling strategies. In this paper, local heat transfer coefficient distributions were measured in a model of an idealised engine lattice cooling geometry, with flow ejection through film-cooling holes. The measurements were made using the transient liquid crystal technique in a large-scale perspex model at low temperature. The technique allows very high data resolution. Heat transfer patterns on all surfaces of the device including the internal web are presented at engine representative Reynolds numbers. The results are discussed in terms of the interpreted flow field. Furthermore, a subsequent analysis which accounted for the changing driving gas temperature and mass flow rate through the model has allowed the heat transfer coefficients to be derived based on the mixed bulk temperature, and local passage Reynolds number.

Publisher

American Society of Mechanical Engineers

Cited by 18 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3