A New Hybrid Air Blast Nozzle for Advanced Gas Turbine Combustors

Author:

Mansour Adel1,Benjamin Michael1,Steinthorsson Erlendur1

Affiliation:

1. Parker Hannifin Corporation, Mentor, OH

Abstract

The push towards higher specific fuel consumption and smaller, lighter packaging for aerospace gas turbine engines has resulted in large increases in engine operating pressure and temperature. This is a trend that is expected to continue, and as a result, thermal management of the hot engine section including the fuel nozzle, combustor, and turbine has emerged as a critical technology area requiring further development. For the fuel injection system, nozzle thermal management, turndown ratio, and atomization performance while maintaining correct combustor aerodynamics are the most important performance features that necessitate optimization. Significant advances in fuel injection concepts are required to meet the increasingly demanding combustor requirements. Complex heat-shielded designs are often required to reduce nozzle wetted-wall temperatures and prevent the formation of carbonaceous deposits within the fuel delivery passages. To support the development of advanced combustors and address these increasing performance demands, Parker has developed a new Hybrid Air Blast nozzle. Advanced analytical and experimental design tools were applied to reduce the cut-and-try approach previously used in nozzle development. The developed hybrid air blast design achieved excellent atomization performance over a wide range of fuel flow rates and air pressure drops. Thermal analysis of the nozzle showed that the wetted wall temperatures were reduced considerably when compared to previous designs operating at the same conditions. Eight-port circumferential spray patternation results were outstanding with the patternation factor at various values of liquid flow rate ranging between 0.12 and 0.18. This patternation factor is a significant improvement over those of current state-of-the-art injectors that are typically of the order of 0.25.

Publisher

American Society of Mechanical Engineers

Cited by 18 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3