Three-Dimensional Turbulent Flow of the Tip Leakage Vortex in an Axial Compressor Rotor Passage

Author:

Ma Hongwei1,Jiang Haokang1

Affiliation:

1. Beijing University of Aeronautics and Astronautics, Beijing, P. R. China

Abstract

Three-dimensional turbulent flow of the tip leakage vortex in a single-stage axial compressor rotor passage is studied using a 3-Component Laser Doppler Velocimetry. The measurement results indicate that the tip leakage vortex originates at about 10% axial chord, 8% pitch away from the suction surface, and becomes strongest at about 30% chord. With the flow downstream, the vortex core moves toward the pressure surface and to a lower radial location, leading to substantial flow mixing, blockage and turbulence in the tip region. The radial component of turbulence intensities is found to be the highest while the axial-radial component of Reynolds stresses is the largest. Breakdown of the leakage vortex occurs inside the rear rotor passage, which makes the flow more turbulent in a wider region downstream. This viewpoint is confirmed by the measurements of unsteady static pressure on the casing wall. Breakdown of a leakage vortex is observed clearly in a compressor cascade with a small clearance. Unsteady interactions of the broken vorticities and the suction surface’s boundary layer are shown obviously inside the downstream passage.

Publisher

American Society of Mechanical Engineers

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3