Effect of Rear Wing on Time-Averaged Ground Vehicle Wake With Variable Slant Angle

Author:

Shehab Uddin Md.1,Rashid Fazlur1

Affiliation:

1. Department of Mechanical Engineering, Rajshahi University of Engineering and Technology, Rajshahi 6204, Bangladesh

Abstract

Abstract The slant angle plays a crucial role in the flow property of hatchback ground vehicles. An optimum slant angle is obligatory for better handling the ground vehicles when fitted with a rear wing. In this regard, the variation of time-averaged flow properties around a wing-attached hatchback ground vehicle (Ahmed body) due to a variable slant angle is accessed by this paper. The design includes a scaled Ahmed body as a reference ground vehicle and a rear wing with NACA 0018 profile. The computational studies are executed with Reynolds-averaged Navier–Stokes based k-epsilon turbulence model with nonequilibrium wall function. The vehicle's model is scaled to 75% of the actual model, and analyses are conducted with Reynolds number 2.7 × 106. After the study, it is observed that a 15 deg slant angle is the critical angle for the wing attached state in which the drag coefficient is maximum. After this angle, a sudden reduction of coefficients is observed, where 25 deg is critical for without wing condition. Besides this, the two counter-rotating horseshoe vortices in the separation bubble and side edge c-pillar vortices also behave differently due to the wing's presence. The turbulent kinetic energy variation and the variation in coefficients of surface pressure are also affected by the rear wing attachment. This paper will assist in finding the optimum slant angle for hatchback ground vehicles in the presence of a rear wing. Thus the study will help in increasing stability and control for hatchback ground vehicles.

Publisher

ASME International

Subject

Mechanical Engineering

Reference35 articles.

1. Aerodynamics of Road Vehicles;Annu. Rev. Fluid Mech.,1993

2. Some Salient Features of the Time-Averaged Ground Vehicle Wake;SAE Trans.,1984

3. Numerical Investigation of Crossflow Separation on the A-Pillar of a Passenger Car;ASME J. Fluids Eng.,2018

4. Topology of Flow Separation on Three-Dimensional Bodies;ASME Appl. Mech. Rev.,1991

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3