Dry Low Emissions Premixer CCD Modeling and Validation

Author:

Hura Harjit S.1,Joshi Narendra D.1,Mongia Hukam C.1,Tonouchi Jon2

Affiliation:

1. General Electric Aircraft Engines, Cincinnati, OH

2. ACRi, Cincinnati, OH

Abstract

Computational Combustion Dynamics has been used extensively at General Electric Company for combustion applications. This paper demonstrates an application of Advanced Combustion Code to GE’s lean premixed dry low NOx emissions LM2500 and LM6000 gas turbine combustors. A methodology for anchoring the Double Annular Counter-Rotating Swirler (DACRS) exit conditions to Laser Doppler Velocity data from a reacting single cup experiment is described. The DACRS exit velocity profiles and turbulence parameters are inlet boundary conditions for the annular combustor simulation. Since over 80 per cent of the total air enters the combustor via the premixers, inaccuracies in these boundary conditions have a significant impact on the predicted flame shape, liner temperatures and emissions. The paper shows comparisons between measured and predicted velocity in a rectangular duct equipped with a single DACRS. The k-ε turbulence model and the two-step eddy break up/eddy dissipation combustion models are used to predict the reacting flow field of the natural gas/air flame. The inlet velocity profiles are developed first to match the LV data and the observed flame impingement location at nominal settings of the inlet turbulence parameters. The sum square error between measured and predicted velocity is used as the optimization function. Next, a design of experiment computational study is conducted to determine the inlet turbulence length scale and kinetic energy in order to further improve the data match. The eddy break up model is shown to be more robust than the eddy dissipation model. The eddy dissipation model resulted in slow combustion rates, and high fuel and carbon monoxide emissions.

Publisher

American Society of Mechanical Engineers

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3