Highly Efficient Probabilistic Finite Element Model Updating Using Intelligent Inference With Incomplete Modal Information

Author:

Zhou K.1,Tang J.2

Affiliation:

1. Department of Mechanical Engineering, University of Connecticut, 191 Auditorium Road, Unit 3139, Storrs, CT 06269

2. Professor Department of Mechanical Engineering, University of Connecticut, 191 Auditorium Road, Unit 3139, Storrs, CT 06269 e-mail:

Abstract

A highly efficient probabilistic framework of finite element model updating in the presence of measurement noise/uncertainty using intelligent inference is presented. This framework uses incomplete modal measurement information as input and is built upon the Bayesian inference approach. To alleviate the computational cost, Metropolis–Hastings Markov chain Monte Carlo (MH MCMC) is adopted to reduce the size of samples required for repeated finite element modal analyses. Since adopting such a sampling technique in Bayesian model updating usually yields a sparse posterior probability density function (PDF) over the reduced parametric space, Gaussian process (GP) is then incorporated in order to enrich analysis results that can lead to a comprehensive posterior PDF. The PDF obtained with densely distributed data points allows us to find the most optimal model parameters with high fidelity. To facilitate the entire model updating process with automation, the algorithm is implemented under ansys Parametric Design Language (apdl) in ansys environment. The effectiveness of the new framework is demonstrated via systematic case studies.

Funder

National Science Foundation

Publisher

ASME International

Subject

General Engineering

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3