Affiliation:
1. School of Mathematics, Hefei University of Technology, Hefei, Anhui 230009, China
2. Center for Interpretation and Evaluation, Daqing Well Logging Technology Service Company, Daqing 163453, China
Abstract
Abstract
Well test analysis is a crucial technique to monitor reservoir performance, which is based on the theory of seepage mechanics, through the study of well test data, to identify reservoir models and estimate reservoir parameters. Reservoir model recognition is the first and essential step of well test analysis. It is usually judged by professionals’ experience, which results in low efficiency and accuracy. This paper is devoted to applying convolutional neural network (CNN) to well test analysis and proposes a new intelligent reservoir model identification method. Eight reservoir models studied in this paper include homogenous reservoirs with different outer boundaries such as infinite acting boundary, circular, single, angular, channel, U-shaped and rectangular sealing fault boundaries, and a radial composite reservoir with infinite acting boundary. Well testing data used in this paper, including actual field data and theoretical data, are generated by analytical solutions. To improve the classification accuracy of actual field data, noise processing was carried out on the data before training. The CNN that is most suitable for model recognition has been obtained through trial-and-error procedures. The availability of proposed CNN is proved with actual field cases of Daqing oil field, China. The method realizes the automatic identification of reservoir model with the total classification accuracy (TCA) of test data set of 98.68% and 95.18% for original data and noisy data, respectively.
Subject
Geochemistry and Petrology,Mechanical Engineering,Energy Engineering and Power Technology,Fuel Technology,Renewable Energy, Sustainability and the Environment
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献