Optimization and Estimation of the Thermal Energy of an Absorber With Graphite Disks by Using Direct and Inverse Neural Network

Author:

Márquez-Nolasco A.1,Conde-Gutiérrez R. A.2,Hernández J. A.3,Huicochea A.4,Siqueiros J.5,Pérez O. R.1

Affiliation:

1. Centro de Investigación en Ingeniería y Ciencias Aplicadas (CIICAp), Universidad Autónoma del Estado de Morelos, Avenida Universidad No. 1001, Col Chamilpa, CP, Cuernavaca 62209, Morelos, Mexico

2. Centro de Investigación en Ingeniería y Ciencias Aplicadas (CIICAp), Universidad Autónoma del Estado de Morelos, Avenida Universidad No. 1001, Col Chamilpa, CP, Cuernavaca 62209, Morelos, Mexico e-mail:

3. Centro de Investigación en Ingeniería y Ciencias Aplicadas (CIICAp), Universidad Autónoma del Estado de Morelos (UAEM), Avenida Universidad No. 1001, Col Chamilpa, CP, Cuernavaca 62209, Morelos, Mexico e-mail:

4. Centro de Investigación en Ingeniería y Ciencias Aplicadas (CIICAp), Universidad Autónoma del Estado de Morelos (UAEM), Avenida Universidad No. 1001, Col Chamilpa, CP, Cuernavaca 62209, Morelos, Mexico

5. Secretaría de Innovación, Ciencia y Tecnología de Morelos, Avenida Atlacomulco No. 13, Colonia Acapatzingo, C.P., Cuernavaca 62440, Morelos, Mexico

Abstract

The most critical component of an absorption heat transformer (AHT) is the absorber, by which the exothermic reaction is carried out, resulting in a useful thermal energy. This article proposed a model based on improving the performance of energy for an absorber with disks of graphite during the exothermic reaction, through an optimal strategy. Two models of artificial neural networks (ANN) were developed to predict the thermal energy, through two important factors: internal heat in the absorber (QAB) and the temperature of the working solution of the absorber outlet (TAB). Confronting the simulated and real data, a satisfactory agreement was appreciated, obtaining a mean absolute percentage error (MAPE) value of 0.24% to calculate QAB and of 0.17% to calculate TAB. Furthermore, from these ANN models, the inverse neural network (ANNi) allowed improves the thermal efficiency of the absorber (QAB and TAB). To find the optimal values, it was necessary to propose an objective function, where the genetic algorithms (GAs) were indicated. Finally, by applying the ANNi–GAs model, the optimized network configuration was to find an optimal value of concentrated solution of LiBr–H2O and the vapor inlet temperature to the absorber. The results obtained from the optimization allowed to reach a value of QAB from 1.77 kW to 2.44 kW, when a concentrated solution of LiBr–H2O at 59% was used and increased the value of TAB from 104.66 °C to 109.2 °C when a vapor inlet temperature of 73 °C was used.

Funder

Consejo Nacional de Ciencia y Tecnología

Publisher

ASME International

Subject

Geochemistry and Petrology,Mechanical Engineering,Energy Engineering and Power Technology,Fuel Technology,Renewable Energy, Sustainability and the Environment

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3