Affiliation:
1. Department of Mechanical Engineering, Bogazici University, Istanbul 34342, Turkey e-mail:
Abstract
We develop an observer-based boundary controller for the rotary table to suppress stick–slip oscillations and to maintain the angular velocity of the drill string at a desired value during a drilling process despite unknown friction torque and by using only surface measurements. The control design is based on a distributed model of the drill string. The obtained infinite dimensional model is converted to an ordinary differential equation–partial differential equation (ODE–PDE) coupled system. The observer-based controller is designed by reformulating the problem as the stabilization of an linear time-invariant (LTI) system which is affected by a constant unknown disturbance and has simultaneous actuator and sensor delays. The main contribution of the controller is that it requires only surface measurements. We prove that the equilibrium of the closed-loop system is exponentially stable, and that the angular velocity regulation is achieved with the estimations of unknown friction torque and drill bit velocity. The effectiveness of the controller is demonstrated using numerical simulations.
Subject
Computer Science Applications,Mechanical Engineering,Instrumentation,Information Systems,Control and Systems Engineering
Cited by
17 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献