Affiliation:
1. University of Pittsburgh, Pittsburgh, PA
2. Pratt & Whitney, East Hartford, CT
Abstract
Described in this paper is an experimental study of heat transfer over a trailing edge configuration preceded with an internal cooling channel of pedestal array. The pedestal array consists of both circular pedestals and oblong shaped blocks. Downstream to the pedestal array, the trailing edge features pressure side cutback partitioned by the oblong shaped blocks. The local heat transfer coefficient over the entire wetted surface in the internal cooling chamber has been determined by using a “hybrid” measurement technique based on transient liquid crystal imaging. The hybrid technique employs the transient conduction model in a semi-infinite solid for resolving the heat transfer coefficient on the endwall surface uncovered by the pedestals. The heat transfer coefficient over a pedestal can be resolved by the lumped capacitance method with an assumption of low Biot number. The overall heat transfer for both the pedestals and endwalls combined shows a significant enhancement compared to the case with thermally developed smooth channel. Near the downstream most section of the suction side, the land, due to pressure side cutback, is exposed to the stream mixed with hot gas and discharged coolant. Both the adiabatic effectiveness and heat transfer coefficient on the land section are characterized by using the transient liquid crystal technique.
Cited by
12 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献