Effects of Wet Compression on the Flow Behavior of a Centrifugal Compressor: A CFD Analysis

Author:

Surendran Anish1,Kim Heuy Dong2

Affiliation:

1. National Institute of Technology Karnataka, Mangalore, KA, India

2. Andong National University, Andong, Gyeongbuk, South Korea

Abstract

Wet compression has been emerging as a prominent method for augmenting net power output from land based gas turbine engine. It is proven more effective than the conventional inlet cooling methods. In this method, fine water droplets are injected just upstream of the compressor impeller. These water droplets absorb the latent heat of evaporation during the compression process of gas-water droplet two-phase flow, consequently reducing the temperature rise. Many gas turbine engineers have performed the feasibility and usefulness studies on this wet compression, but physical understanding on the wet compression process is highly lacking, and related compression flow mechanism remains ambiguous. In the present study, a computational fluid dynamics method has been applied to investigate the wet compression effects on a low speed centrifugal compressor. A Langrangian particle tracking method was employed to simulate the air-water droplet two-phase flow. The power saving achieved with different injection ratio of water droplets has been calculated and it is found that significant saving can be obtained with a water droplet injection ratio of above 3%. The vapor mass fraction varies linearly along the streamwise direction, making the assumption for a constant evaporation rate is valid. With the increase in the injection ratio the polytropic index for compression is coming down. The diffuser pressure recovery has been improved significantly with the wet compression; while the total pressure ratio across the impeller does not improve much. Contrary to the expectation, the evaporation rate is found to be coming down with the increase in the compressor mass flow rate. It is observed that the operating point, at which the peak pressure ratio occurs, shift towards higher mass flow rate during wet compression due to the local recirculation region within the vaneless space between the impeller and diffuser.

Publisher

American Society of Mechanical Engineers

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3