Film Cooling From a Single Row of Holes Oriented in Spanwise/Normal Planes

Author:

Ligrani P. M.1,Ramsey A. E.2

Affiliation:

1. Department of Mechanical Engineering, University of Utah, Salt Lake City, UT 84112

2. Department of Mechanical Engineering, Naval Postgraduate School, Monterey, CA 93943

Abstract

Experimental results are presented that describe the development and structure of flow downstream of a single row of film-cooling holes inclined at 30 deg from the test surface in spanwise/normal planes. With this configuration, holes are spaced 6d apart in the spanwise direction in a single row. Results are presented for a ratio of injectant density to free-stream density near 1.0, and injection blowing ratios from 0.5 to 1.5. Compared to results measured downstream of simple angle (streamwise) oriented holes, spanwise-averaged adiabatic effectiveness values are significantly higher for the same spanwise hole spacing, normalized streamwise location x/d, and blowing ratio m when m = 1.0 and 1.5 for x/d < 80. The injectant from the spanwise/normal holes is also less likely to lift off of the test surface than injectant from simple angle holes. This is because lateral components of momentum keep higher concentrations of injectant in closer proximity to the surface. As a result, local adiabatic effectiveness values show significantly greater spanwise variations and higher local maxima at locations immediately downstream of the holes. Spanwise-averaged iso-energetic Stanton number ratios range between 1.07 and 1.26, which are significantly higher than values measured downstream of two other injection configurations (one of which is simple angle, streamwise holes) when compared at the same x/d and blowing ratio.

Publisher

ASME International

Subject

Mechanical Engineering

Reference19 articles.

1. Gauntner, J. W., 1977, “Effects of Film Injection Angle on Turbine Vane Cooling,” NASA TP-1095, NASA Technical Paper 1095.

2. Goldstein R. J. , EckertE. R. G., EriksenV. L., and RamseyJ. W., 1970, “Film Cooling Following Injection Through Inclined Circular Tubes,” Israel Journal of Technology, Vol. 8, pp. 145–154.

3. Honami, S., and Fukagawa, M., 1987, "A Study on Film Cooling Behavior of a Cooling Jet Over a Concave Surface," Paper No. 87-Tokyo IGTC-72

4. Proc. 1987 Tokyo International Gas Turbine Congress, Vol. 3, pp. 209-216.

5. Honami S. , ShizawaT., and UchiyamaA., 1994, “Behavior of the Laterally Injected Jet in Film Cooling: Measurements of Surface Temperature and Velocity/Temperature Field Within the Jet,” ASME JOURNAL OF TURBOMACHINERY, Vol. 116, pp. 106–112.

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3