Spatial Dynamics of Deformable Multibody Systems With Variable Kinematic Structure: Part 2—Velocity Transformation

Author:

Chang C. W.1,Shabana A. A.2

Affiliation:

1. COMTEK, NASA Langley Research Center, M. S. 230, Hampton, VA 23665

2. Department of Mechanical Engineering, University of Illinois at Chicago, P.O. Box 4348, Chicago, Illinois 60680

Abstract

In Part 1 of these two companion papers, the spatial system kinematic and dynamic equations are developed using the Cartesian and elastic coordinates in order to maintain the generality of the formulation. This allows introducing general forcing functions and adding and/or deleting kinematic constraints. In control applications, however, it is desirable to determine the joint forces associated with the joint variables. On the other hand the use of the joint coordinates to formulate the dynamic equations leads to a complex recursive formulation based on loop closure equations. In this paper a velocity transformation technique applicable to spatial multibody systems that consist of interconnected rigid and deformable bodies is developed. The Cartesian variables are expressed in terms of the joint and elastic variables. The resulting kinematic relationships are then employed to determine the joint forces associated with the joint variables. A spatial robot manipulator that manipulates an object is presented as a numerical example to exemplify the development presented in this paper.

Publisher

ASME International

Subject

Computer Graphics and Computer-Aided Design,Computer Science Applications,Mechanical Engineering,Mechanics of Materials

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Modeling of Impact in Multibody Systems: An Overview;Journal of Computational and Nonlinear Dynamics;2012-08-31

2. Description of joint constraints in the floating frame of reference formulation;Proceedings of the Institution of Mechanical Engineers, Part K: Journal of Multi-body Dynamics;2009-03-26

3. An enhanced computational scheme for the analysis of elastic mechanisms;Computers & Structures;1997-01

4. A nonlinear finite element approach to kineto-static analysis of elastic beams;Mechanism and Machine Theory;1996-04

5. On the numerical solution of tracked vehicle dynamic equations;Nonlinear Dynamics;1994-12

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3