Review—Mean Flow in Turbulent Boundary Layers Disturbed to Alter Skin Friction

Author:

Bandyopadhyay P. R.1

Affiliation:

1. NASA Langley Research Center, Hampton, VA 23665-5225

Abstract

Recent developments in methods of reducing drag in turbulent boundary layers have been briefly reviewed. The behavior of the mean flow in several drag reducing boundary-layer flows of current interest, viz., those over longitudinal surface riblets, outer-layer devices (OLD’s), and longitudinal convex surface curvature, has been examined. The boundary layer on a surface with longitudinal concave curvature has been studied to complement the results of convex curvature. The riblets alter the flow in their vicinity only and cause no drag penalty. However, the OLD’s disturb the entire boundary layer, and it is the slow downstream (≃150 δ0) relaxation back to the equilibrium state that produces a region of lower skin friction; a net drag reduction results when the wall-drag reduction exceeds the drag penalty due to the device. The net drag reduction achieved by the riblets and OLD’s remains a modest 10 percent compared with the more spectacular levels reached by polymer addition and microbubble injection in water. Over mild convex curvatures, the outer-boundary-layer response is a function of the curvature ratio (δ0/R), and the relaxation rate after a length of convex curvature is a function of the curved length ratio (Δs0/δi). Boundary layers exhibit an asymmetric response to streamwise surface curvatures; the response is slower to a concave curvature than to a convex. Detailed turbulence and accurate wall shear stress measurements in the altered boundary layers are needed to understand the drag-reducing mechanisms involved.

Publisher

ASME International

Subject

Mechanical Engineering

Cited by 81 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3