The Functional Role of Wing Corrugations in Living Systems

Author:

Buckholz R. H.1

Affiliation:

1. Department of Mechanical Engineering, Columbia University, New York, NY 10027

Abstract

Questions concerning the functional role of spanwise wing corrugation in living systems are experimentally investigated. Attention was initially directed to this problem by observation of the irregular shape of many insect wings as well as other studies indicating higher lift on these wings. First, a flow visualization scheme was used to observe and photograph streamlines around two different wing sections. One of these, a sheet metal model with geometry matching that of a butterfly wing, was studied at a chord Reynolds number of 1500 and at a Reynolds number of 80 based on corrugation depth. A steady-state recirculation region near the model leading edge was found, and the separated flow region above this recirculation zone formed a laminar reattachment to the model. A second thicker wing was corrugated on the upper surface. Closed streamlines inside these upper surface corrugations were photographed at Reynolds numbers of 8000 and 3800 based on chord length, and 200 and 90 based on corrugation depth. Reductions in pressures on the corrugated upper wing surface relative to a smooth upper wing surface were then measured.

Publisher

ASME International

Subject

Mechanical Engineering

Cited by 26 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3