The Leidenfrost Effect at the Nanoscale

Author:

Cordeiro Jhonatam1,Desai Salil2

Affiliation:

1. Department of Industrial and Systems Engineering, North Carolina A&T State University, 419 McNair Hall, 1601 East Market Street, Greensboro, NC 27411 e-mail:

2. Department of Industrial and Systems Engineering, North Carolina A&T State University, 423 McNair Hall, 1601 East Market Street, Greensboro, NC 27411 e-mail:

Abstract

Nanotechnology has been presenting successful applications in several fields, such as electronics, medicine, energy, and new materials. However, the high cost of investment in facilities, equipment, and materials as well as the lack of some experimental analysis at the nanoscale can limit research in nanotechnology. The implementation of accurate computer models can alleviate this problem. This research investigates the Leidenfrost effect at the nanoscale using molecular dynamics (MDs) simulation. Models of water droplets with diameters of 4 nm and 10 nm were simulated over gold and silicon substrates. To induce the Leidenfrost effect, droplets at 293 K were deposited on heated substrates at 373 K. As a baseline, simulations were run with substrates at room temperature (293 K). Results show that for substrates at 293 K, the 4 nm droplet has higher position variability than the 10 nm droplets. In addition, for substrates at 373 K, the 4 nm droplets have higher velocities than the 10 nm droplets. The wettability of the substrate also influences the Leidenfrost effect. Droplets over the gold substrate, which has hydrophobic characteristics, have higher velocities as compared to droplets over silicon that has a hydrophilic behavior. Moreover, the Leidenfrost effect was observed at the boiling temperature of water (373 K) which is a significantly lower temperature than reported in previous experiments at the microscale. This research lays the foundation for investigating the fluid–structure interaction within several droplet based micro- and nano-manufacturing processes.

Funder

National Science Foundation

Publisher

ASME International

Subject

Industrial and Manufacturing Engineering,Process Chemistry and Technology,Mechanics of Materials

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3