Analytic Methods for Stress Analysis of Two-Dimensional Flat Anisotropic Plates With Notches: An Overview

Author:

Sevenois R. D. B.1,Koussios S.2

Affiliation:

1. Faculty of Aerospace Engineering, Department of Aerospace Structures and Materials, Delft University of Technology, Delft 2629HS, The Netherlands e-mail:

2. Assistant Professor Faculty of Aerospace Engineering, Department of Aerospace Structures and Materials, Delft University of Technology, Delft 2629HS, The Netherlands e-mail:

Abstract

The anisotropy of composite plates often poses difficulties for stress field analysis in the presence of notches. The most common methods for these analyses are: (i) analytical means (AM), (ii) finite element analysis (FEA), and (iii) semi-analytical means (SAM). In industry, FEA has been especially popular for the determination of stresses in small to medium size parts but can require a considerable amount of computing power and time. For faster analyses, one can use AM. The available solutions for a given problem, however, can be quite limited. Additionally, AM implemented in commercial computer software are scarce and difficult to find. Due to this, these methods are not widespread and SAM were proposed. SAM combine the (easy) implementation of complex problems from FEA and the computational efficiency from AM to reduce the difficulty on mathematical operation and increase computational speed with respect to FEA. AM, however, are still the fastest and most accurate way to determine the stress field in a given problem. Complex problems, however, e.g., finite width plates with multiple loaded/unloaded notches, require a significant amount of mathematical involvement which quickly discourages, even seasoned, scientists, and engineers. To encourage the use of AM, this paper gives a brief review of the mathematical basis of AM followed by a historic perspective on the expansions originating from this mathematical basis. Specifically the case of a two-dimensional anisotropic plate with unloaded cut-outs subjected to in-plane static load is presented.

Publisher

ASME International

Subject

Mechanical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3