An Investigation of Performance and Emissions of Diesel Engine Using Heterogeneous Catalyst Jatropha Biodiesel: A Sustainable Model Using Taguchi and Response Surface Methodology

Author:

Singh Aparna1,Choudhary Akhilesh Kumar2,Sinha Shailendra1

Affiliation:

1. Institute of Engineering & Technology Department of Mechanical Engineering, , Lucknow 226021 , India

2. National Institute of Technology Department of Mechanical Engineering, , Hamirpur 177005 , India

Abstract

Abstract Excessive consumption of fossil fuels has exacerbated global warming and led to an increase in air pollution levels in the environment. The increasing oil demand prompted recent research to explore the future application of alternative, eco-friendly fuels for diesel engines. Jatropha biodiesel has been produced from JCO, using heterogeneous catalyst (CaO) through transesterification process. In this study, the performance and emission characteristics of an engine powered by a Jatropha biodiesel blends have been investigated. The application of response surface methodology (RSM) coupled with Taguchi method for optimization of engine input parameters is promising approach to derive the most accurate optimized models for output responses. Input parameters such as biodiesel blend, load, CR, and FIP were selected, experiments were designed as per L18 orthogonal array in Taguchi, and CCFCD L20 design matrix for RSM methodology. Injection timing is an essential engine characteristic, which has a considerable effect on the ordering emissions. If injection is done early, the starting air temperature and pressure are lower, which means the ignition delay will rise. The ignition delay may begin at any time after the injection begins, resulting in somewhat increased temperature and pressure initially but which then rapidly declines as the ignition delay progresses. The optimal setting of engine input parameters is recorded at 270 bar fuel injection pressure, compression ratio of 18, 7.61 kg load, and 25% blend of Jatropha biodiesel with diesel for optimum BTHE, BMEP, BSFC, Pmax, CO, and NOx emissions. Experimental results are compared with optimum output responses and deviations are found within the accepted range of errors.

Publisher

ASME International

Subject

Geochemistry and Petrology,Mechanical Engineering,Energy Engineering and Power Technology,Fuel Technology,Renewable Energy, Sustainability and the Environment

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3