Mechanical Behavior of Bolted Joints Under Steady Heat Conduction

Author:

Kumano H.1,Sawa T.2,Hirose T.2

Affiliation:

1. Department of Mechanical Engineering, Tokyo Metropolitan Institute of Technology, Hino, Japan

2. Department of Mechanical Engineering, Yamanashi University, Kofu, Japan

Abstract

Bolted joints in heat exchangers, cylinder heads in combustion engines, and so on are subjected to heat fluxes. It is necessary to examine the mechanical behavior of such bolted joints under thermal changes in order to establish an optimal design. This paper deals with mechanical behavior of bolted joints, in which two hollow cylinders and two rectangular thick plates made of aluminum are fastened at room temperature by a bolt and nut made of steel, and are subjected to thermal changes or steady heat conduction. Temperature distributions of the joints are analyzed using the finite difference method. Then, methods for estimating an increment in axial bolt force and a maximum stress produced in the bolts are proposed. In the experiments, the aforementioned bolted joints are put in a furnace. Furthermore, the rectangular thick plates fastened by a bolt and nut are heated by an electric heater. Then, the temperatures on the surfaces of the clamped parts and the bolts are measured with thermocouples. The increase in axial bolt force and the maximum stress produced in the bolts under steady heat conduction or thermal changes are measured. The analytical results are in fairly good agreement with the experimental ones.

Publisher

ASME International

Subject

Mechanical Engineering,Mechanics of Materials,Safety, Risk, Reliability and Quality

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3