Knowledge Recommendation System for Human-Robot Collaborative Disassembly Using Knowledge Graph

Author:

Hu Yang1,Ding Yiwen2,Xu Feng1,Liu Jiayi2,Xu Wenjun2,Feng Hao1

Affiliation:

1. China Ship Development and Design Center, Wuhan, China (Mainland)

2. Wuhan University of Technology, Wuhan, China (Mainland)

Abstract

Abstract In recent years, more and more attention has been paid to Human-Robot Collaborative Disassembly (HRCD) in the field of industrial remanufacturing. Compared with the traditional manufacturing, HRCD helps to improve the manufacturing flexibility with considering the manufacturing efficiency. In HRCD, knowledge could be obtained from the disassembly process and then provides useful information for the operator and robots to execute their disassembly tasks. Afterwards, a crucial point is to establish a knowledge-based system to facilitate the interaction between human operators and industrial robots. In this context, a knowledge recommendation system based on knowledge graph is proposed to effectively support Human-Robot Collaboration (HRC) in disassembly. A disassembly knowledge graph is constructed to organize and manage the knowledge in the process of HRCD. After that, based on this, a knowledge recommendation procedure is proposed to recommend disassembly knowledge for the operator. Finally, the case study demonstrates that the developed system can effectively acquire, manage and visualize the related knowledge of HRCD, and then assist the human operator to complete the disassembly task by knowledge recommendation, thus improving the efficiency of collaborative disassembly. This system could be used in the human-robot collaboration disassembly process for the operators to provide convenient knowledge recommendation service.

Publisher

American Society of Mechanical Engineers

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3