Modelling and Control of a Hydraulically Actuated Shaking Table Employed for Vibration Absorber Testing

Author:

Pagano Stefano1,Russo Riccardo1,Strano Salvatore1,Terzo Mario1

Affiliation:

1. University of Naples “Federico II”, Naples, Italy

Abstract

This paper presents an activity concerning the modelling and control of an unidirectional electro-hydraulically actuated table adopted to test vibration isolators. The test rig consists of a hydraulic actuation system that drives a sliding table mounted on linear bearings. The system is characterized by nonlinearities such as valve dead zone and frictions. A nonlinear model is derived and then employed for parameters identification procedure. The results concerning the model validation are illustrated. They fully confirm the effectiveness of the proposed model able to capture the system behavior. The testing procedure of the isolation systems is based on the definition of a target displacement time history of the table and, consequently, the precision of the table positioning is of primary importance. In order to minimize the positioning error, a suitable control system has to be adopted. The system non-linearities limit highly the performances of the classical linear control, so a non-linear one is proposed. The sliding table mathematical model is employed for a non-linear control design able to minimize the error between the target position and the current one. The controller synthesis is made taking into account no isolator under test. The proposed approach consists in a non-linear optimal control based on the state-dependent Riccati equation (SDRE). Numerical simulations have been performed in order to evaluate the goodness of the designed control with and without the specimen under test. The results confirm that the performances of the proposed non-linear controller are not invalidated because of the presence of the specimen and highlight the controller robustness.

Publisher

American Society of Mechanical Engineers

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Nonlinear model of a servo-hydraulic shaking table with dynamic model of effective bulk modulus;Mechanical Systems and Signal Processing;2018-09

2. A SDRE-based tracking control for a hydraulic actuation system;Mechanical Systems and Signal Processing;2015-08

3. Flowslide Investigations Test Rig Design;Transactions on Engineering Technologies;2015

4. A multi-purpose seismic test rig control via a sliding mode approach;Structural Control and Health Monitoring;2014-01-19

5. System structure identification and adaptive control of a seismic isolator test rig;Mechanical Systems and Signal Processing;2013-11

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3