Towards Building a Multiscale Mechanical Model for the Prediction of Acute Subdural Hematomas

Author:

Nierenberger Mathieu1,George Daniel1,Baumgartner Daniel1,Rémond Yves1,Ahzi Saïd1,Wolfram Renée1,Kahn Jean-Luc1,Abdel Rahman Rania2

Affiliation:

1. University of Strasbourg, Strasbourg, France

2. French University of Cairo, Chorouk, Egypt

Abstract

Acute subdural hematoma (ASDH) is a potentially devastating, yet curable, extra axial fluid collection within the subdural space situated between the skull and the cortex. It is often due to rupture of bridging veins crossing this subdural space, caused by the brain-skull relative motion. To be able to predict ASDH, a numerical model reflecting the mechanical properties of vascular walls is attractive. With this in mind, a suitable approach consists in modeling the material microstructure at different scales. In a former work [1, 2], R. Abdel Rahman studied the mechanical properties of the bridging veins – superior sagittal sinus junction when a human head is submitted to shock. This work showed the apparition of ASDH over a given value of head rotational acceleration. But lacks in the knowledge of microstructure and of the constituents mechanical properties were put forward in understanding the relations between material mechanical behavior and the apparition of ASDH. Therefore we chose to adopt a multiscale approach to model ASDH apparition. In the current work, several experimental observations have been set up to obtain a sufficient knowledge of the vein wall microstructure which was imprecisely documented to date. Stained thin slices of human brain were observed by optical microscopy. In addition, microtomography was used to assess the collagen fibers orientations. These observations allowed the identification of the different scales needed for modeling the microstructure. Many authors [3–6] deal with the mechanical behavior of vascular walls and of their various constituents but none of them consider multiple scales for modeling [7]. The next step of this work consists in improving the predictive capabilities of the existing model by going down the scales and taking microstructure into account. This methodology enabled the introduction of only physical parameters into the model, which is essential for future predictive capabilities. Finally, a failure criterion for the bridging veins taking into account the different scales has been created and is still being improved. It allows the evaluation of specific disease influence like collagen damage due to physiology. Besides it provides a prediction tool for ASDH useable for optimization of various shock absorbers.

Publisher

American Society of Mechanical Engineers

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3