Recycling of Carbon Fiber: Identification of Bases for a Synergy Between Recyclers and Designers

Author:

Pompidou Stéphane1,Prinçaud Marion1,Perry Nicolas2,Leray Dimitri1

Affiliation:

1. Université de Bordeaux, Talence, France

2. Arts et Métiers ParisTech, Talence, France

Abstract

In order to decrease both energy consumption and CO2 emissions, the automotive, aeronautics and aerospace industries aim at making lighter vehicles. To achieve this, composite materials provide good opportunities, ensuring high material properties and free definition of geometry. As an example, for cold applications, the use of carbon fiber/thermoset composites is ever increasing, in spite of a high fiber price. But in a global and eco-friendly approach, the major limitation for their use remains their potential recyclability. Recycling a composite means having a recycling technology available, getting a dismantle solution and an access for the product, and disposing identification plus selection possibilities to the materials. Thus, carbon fibers recovery (i.e. recycling and re-processing) would both help design engineers to balance energy efficiency and cost, and open new opportunities for developing second-life composites, dedicated to the manufacture of medium or low loaded parts (non-structural in many cases). A first section presents an overview of composite recycling possibilities. Indeed, environmentally and economically, composite incineration is not attractive (even with an energetic valorization), let-alone burying. Reuse and recycling thus remain the two most interesting options. Aeronautics offers a high potential in terms of fiber deposit. In southwest France, composites recycling will increase in terms of quantity due to dismantling platforms Tarmac (dedicated to civil aircraft applications) and P2P (for the disassembly of ballistic weapons). In addition, from a technical point of view, and even if end-of-life solutions for composites still remain under development, solvolysis (i.e. water under supercritical conditions) already offers the opportunity to recover carbon fibers. The resulting recyclate retains up to 90 percent of the fiber’s mechanical properties. A second part will explore the recycling to design issue (i.e. how recycling processes have to balance the previous aspects of the end-of-life proposal). The recycler clearly becomes a new supplier in the carbon fiber lifecycle, by revalorizing wastes with alternatives to burning. Moreover, increasing carbon fiber shelf life reduces its product life impact. Finally, promoting carbon fiber end-of-life would ensure to link aeronautics, automotive, and leisure and sports industries; but one can create demand for recycled reinforcement, by packaging it in useful and attractive forms for those end-users (e.g. pseudo-continuous fiber, felt, strips, bands, patches, etc.). These sections will be enlightened by several examples from collaborations between I2M and local industries.

Publisher

American Society of Mechanical Engineers

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3