Non-Linear Hysteretic Seabed Model for Catenary Pipeline Contact

Author:

Randolph Mark1,Quiggin Peter2

Affiliation:

1. University of Western Australia, Perth, WA, Australia

2. Orcina Ltd., Ulverston, Cumbria, UK

Abstract

This paper presents a new mathematical model of the reaction force normal to the seabed, experienced by a pipeline or catenary riser in contact with the seabed. Such contact is currently often modeled using simple seabed contact models, and it is hoped that improved modeling of the seabed interaction will give more accurate predictions of system behavior, in particular for fatigue analysis. The model uses as its primary data the pipe diameter, the seabed soil shear strength profile with depth and the soil density. Additional parameters, in particular the maximum normalized stiffness of the pipe-soil response following reversal of motion, are used to derive non-linear hyperbolic functions that model the seabed resistance force as a function of the penetration. Different functions are used for the initial penetration, for uplift and for repenetration, and the function parameters are updated each time a penetration reversal occurs. This enables the model to capture the hysteretic behavior of the seabed response and the increasing penetration of the pipe under cycles of load in the vertical plane, although no attempt is made to model softening of the soil due to remolding. The paper documents the model equations and discusses their background and characteristics. The various non-dimensional parameters of the model that are used to control the resistance response are described and their effects are illustrated. The model is intended for use in practical engineering analysis and has been implemented in a commercial riser analysis program (Orcina 2008). The paper compares results obtained using the model against measured results for pipe-seabed interaction from laboratory and harbor experiments. It also presents results of using the model for engineering analysis of a riser under cyclic motions, and compares the resulting fatigue life with that obtained using a simple linear seabed model.

Publisher

ASMEDC

Cited by 47 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3