CAPWAP and Refined Wave Equation Analyses for Driveability Predictions and Capacity Assessment of Offshore Pile Installations

Author:

Rausche Frank1,Nagy Matt1,Webster Scott2,Liang Liqun3

Affiliation:

1. GRL Engineers, Inc., Cleveland, OH

2. GRL Engineers, Inc., Charlotte, NC

3. Pile Dynamics, Inc., Cleveland, OH

Abstract

Open ended pipe piles have to be driven in the offshore environment primarily as platform support piles or as conductor pipes. In either case, deep penetrations have to be achieved. In preparation of these potentially difficult installations, equipment selection and stress control is done by a predictive wave equation analysis. During pile driving, dynamic monitoring combined with CAPWAP signal matching analysis is a preferred method for bearing capacity assessment. After the fact, if dynamic measurements were not provided during pile driving, a wave equation analysis can again help perform a post-installation analysis for bearing capacity assessment, assuming a variety of parameters. Wave equation analyses require a variety of input parameters describing hammer and driving system performance and the pseudo-static and dynamic behavior of the soil. Measurements taken during the installation yield immediate results about hammer and pile performance. Soil resistance parameters can be extracted by careful signal matching analysis. Unfortunately, the measurement and associated analysis results cannot be used without further modification in the wave equation analysis, because the wave equation approach requires simplifications in hammer, driving system and soil models. Thus, a final step is the so-call Refined Wave Equation Analysis which combines all results obtained and produces a best possible match between measurements and analyses. This paper describes the process of the three analysis phases utilizing typical offshore pile installation records. The paper also gives guide lines for this analysis process as well as a summary of limitations. An important part of the paper includes recommendations for and discussion of the modeling of the soil resistance near the open ended pipe bottom. Finally, the paper discusses how the results should be used for greatest benefit of the deep foundation industry.

Publisher

ASMEDC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3