The Effects on Process Performance of Reducing the Pressure From 36 to 1Bar in Hyperbaric MIG Welding

Author:

Fostervoll Hans1,Woodward Neil2,Akselsen Odd M.1

Affiliation:

1. SINTEF Materials and Chemistry, Trondheim, Norway

2. Isotek Electronics Ltd., Leeds, United Kingdom

Abstract

Technology for remotely controlled (diverless) repair welding of subsea pipelines from 170 to 1000m water depth is being developed by StatoilHydro. The repair technology is based on a sleeve concept combined with MIG welding and the development is currently nearing completion. Technology for diver-assisted remotely controlled welding down to about 200m has been used in the North Sea for about twenty years. In order to reduce the use of divers, the deep water diverless technology is also being considered for use in shallow waters. The present work has been performed to investigate whether the deepwater welding procedure may also be used in shallow waters, and which modifications for the lower pressure conditions need to be made. Test welding has been performed in the pressure range from 36 to 1bar corresponding to 350 to 0m sea water depth to study the effect of ambient pressure upon the welding process behaviour and weld bead appearance and geometry. For the 12 o’clock welding position tested, welding parameters developed for deep water conditions also worked well for shallow water conditions down to about 2bar. It was also evident that the electrode polarity, which is negative for the deep water procedure, had to be changed to electrode positive for the lowest pressures, which coincides with conventional 1-atm MIG welding. Mechanical property testing and microstructure examinations revealed satisfactory results using the modified welding procedure.

Publisher

ASMEDC

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A fast simulation method for thermal management in wire arc additive manufacturing repair of a thin-walled structure;The International Journal of Advanced Manufacturing Technology;2024-03-21

2. Analytical Modeling of Weld Bead Shape in Dry Hyperbaric GMAW Using Ar-He Chamber Gas Mixtures;Journal of Materials Engineering and Performance;2012-08-03

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3