Analysis of the Tunnel Immersion for the Busan-Geoje Fixed Link Project Through Scale Model Tests and Computer Simulations

Author:

Cozijn Hans1,Heo Jin Wook2

Affiliation:

1. Maritime Research Institute Netherlands (MARIN), Wageningen, The Netherlands

2. Daewoo Engineering and Construction, Ltd., Busan, Republic of Korea

Abstract

In Korea a four lane motorway is constructed between the city of Busan and the island Geoje, reducing traveling times from 1 hour by ferry to just 10 minutes by car. The so-called Busan-Geoje Fixed Link consists of 2 cable-stayed girder bridges and a tunnel, crossing the bay of Jinhae. The submerged tunnel is built by transporting each of its 18 elements below 2 pontoons from a construction dock to their final positions and lowering them on the sea bed. The project is unique, because the tunnel elements are installed in a bay with direct access towards open sea. For this reason, the effects of incoming swells and wind seas were investigated in detail, so that the operational limits of the tunnel element immersion could be accurately determined. This was achieved by using an approach of combined hydrodynamic scale model tests and time-domain computer simulations. First, scale model tests were carried out in MARIN’s Shallow Water Basin. A detailed test set-up was constructed, including the trench in which the tunnel elements are placed, as is shown in the photograph. Models of a tunnel element, two pontoons, the mooring system, contraction lines and suspension wires were constructed at a scale of 1:50. The motions of the pontoons and the submerged tunnel element, as well as the tensions in the lines, were measured in a range of different wave conditions. Different stages of the tunnel immersion were investigated. Second, a simulation model of the pontoons and tunnel element was constructed in MARIN’s time-domain simulation tool aNySIM. The large number of mooring lines, contraction lines and suspension wires resulted in a relatively complex numerical model. The simulation model was calibrated such that the results from the model tests could be accurately reproduced. Subsequently, a sensitivity study was carried out, investigating the parameters most critical to the operation and the mooring system of the pontoons was further optimized. Finally, the operational limits of the tunnel immersion were evaluated by carrying out more than 6,500 time-domain simulations, investigating a large number of different combinations of wind sea and swell. The simulation results included motions, velocities and accelerations, as well as line tensions. The extreme values were used to perform a combined evaluation of more than 10 structural and operational criteria. The photograph below (copyright Peter de Haas, Royal Haskoning) shows the immersion of the first of 18 tunnel elements in the bay of Jinhae, in February 2008.

Publisher

ASMEDC

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3